US Greenhouse Gas Emission Scenarios to 2050

Ron Sands

Joint Global Change Research Institute

Battelle – PNNL – University of Maryland

Global Challenges Toward a Low-Carbon Economy:
Country-Specific Scenario Analysis

Montreal, Canada 3 December 2005

Introduction

- Results for the United States from Energy Modeling Forum study (EMF-21)
- > Goals
 - Provide policy-relevant analysis (not policy prescriptive)
 - Economic comparison of major classes of greenhouse gas (GHG) mitigation options
- Classes of Mitigation Options
 - Energy efficiency improvements
 - Fuel switching
 - Carbon dioxide capture and storage (CCS)
 - Non-CO₂ GHGs
 - Terrestrial options (biofuels, carbon in soils, carbon in trees)
- Main Conclusions
 - No single model can represent all relevant processes
 - Each type of mitigation option contributes significant fraction of total

Models

- Energy System and Geologic Storage
 - CO₂ emissions from energy combustion, carbon dioxide capture and storage from electricity generation
 - Battelle Second Generation Model
- Non-CO₂ Greenhouse Gases
 - Methane, Nitrous Oxide, F-gases
 - Energy Modeling Forum (EMF-21) baselines and marginal abatement cost curves
- Agricultural Offsets
 - Soil sequestration, Afforestation, Biofuel Offsets
 - Agricultural Sector Model (McCarl, B.A. and Schneider, U.A. 2001. "Greenhouse Gas Mitigation in U.S. Agriculture and Forestry." Science 294, 2481-2482.)

U.S. Carbon Equivalent Emissions (baseline)

U.S. Carbon Equivalent Emissions (\$100 constant)

U.S. Carbon Equivalent Emissions (\$200 constant)

Carbon Dioxide Capture and Storage (CCS)

- Carbon Dioxide Capture from Electric Power Generation
 - Technologies with and without CCS
 - Coal integrated gasification combined cycle (IGCC)
 - Natural gas combined cycle (NGCC)
 - Engineering cost model for capture process from David and Herzog, 2000, "The Cost of Carbon Capture," Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies
- Geologic Storage
 - Cost of storage assumed constant (\$40 per tC)
 - Ongoing work at Battelle to construct storage supply curves for the US and other countries

U.S. Electricity Baseline Scenario

Constant-Carbon-Price Scenario

Carbon price of \$200 per tC starting in 2015

Economic Comparison of Mitigation Options

- View 1: Components of US emission reductions relative to baseline over time
 - Constant carbon price of \$200 per t C-eq
 - Components
 - Energy system CO₂
 - Carbon dioxide capture and storage
 - Non-CO₂ GHGs (methane, nitrous oxide, F-gases)
 - Terrestrial options (soil carbon, afforestation, biofuels)
- View 2: Cumulative emission reductions over a range of carbon prices
 - Results derived from a set of constant-carbon-price experiments
 - Carbon prices up to \$300 per t C-eq
 - Expressed as cumulative marginal abatement cost curves
 - Cumulative emissions reductions over 40 years

U.S. Cumulative Emissions Reductions (40 years with constant carbon price)

Conclusions

- No single model can represent all relevant processes
 - Bottom-up: specialized analysis or models by sector
 - Agriculture / Forestry
 - Buildings
 - Industry
 - Transportation
 - Electricity generation
 - Top-down: combine results across sectors
- Each type of mitigation option contributes significant fraction of total
 - Energy efficiency improvements
 - Fuel switching
 - CO₂ capture and storage
 - Non-CO₂ greenhouse gases
 - Terrestrial storage and biofuels
- Potential of each mitigation option varies across countries

