

Energy Technology Perspectives Scenarios and Strategies to 2050

NIES Workshop

Developing Visions for a Low Carbon Society through Sustainable Development

Michael Taylor
Energy Technology Policy Division
International Energy Agency

G8 - Gleneagles Communiqué July 2005

"IEA will advise on alternative energy scenarios and strategies aimed at a clean, clever and competitive energy future".

Take part in dialogue, including developing countries

14 international programmes focussed on energy efficiency (buildings, appliances, industry, transport), clean coal, renewables and R&D collaboration

Reports to Japanese G8 Presidency in 2008

World Energy Outlook

WORLD ENERGY OUTLOOK

World Primary Energy Demand

Fossil fuels account for almost 90% of the 60% growth in energy demand between now and 2030

Global CO₂ Emissions

in the Reference & Alternative Scenarios

CO₂ emissions are 16% less in the Alternative scenario in 2030.

Improved energy efficiency contributes more than half to this gap.

But this is not enough...

INTERNATIONAL ENERGY AGENCY

Energy Technology Perspectives 2006

- Contributes to the IEA response to the G8 Plan of Action ("Advising on scenario strategies aimed at a clean, clever and competitive energy future")
- This innovative work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050.

What ETP builds on

- IEAs multi-year ETP project, supported via Voluntary Contributions from Australia, Canada, Italy, Japan, Norway, Sweden, the UK and the US
- Past work on the WEO Alternative Policy Scenarios
- Extensive information base from previous ETO analyses and from IEA's Technology Network
- Substantial input from acrossthe IEA and from a long list of external experts

ETP 2006 Focus

- Status and perspectives for key energy technologies in different sectors
- Global scenario analysis to illustrate how technologies can make a difference
 - Individual scenarios differ in terms of assumptions for nuclear, CCS, renewables, advanced biofuels, hydrogen fuel cells and energy efficiency progress
- Technology Strategies:
 - How much can different technologies deliver?
 - By when can they deliver?
 - What barriers have to be overcome to make them deliver both in the short term and over the next 3-5 decades?
 - Pathways to overcome barriers

Accelerated Technology Scenarios (ACT)

- A family of scenarios to demonstrate how technologies that are already commercial or under development can help towards a sustainable energy future
- All scenarios analyse the impact from measures to accelerated R&D, demonstration and deployment efforts as well as measures aimed at giving incentives for low-carbon technologies

Technology Assumptions (relative to Map Scenario)

Scenario	Renewables	Nuclear	ccs	H ₂ fuel cells	Advanced biofuels	End-use efficiency
Low Renewables	Slower cost reductions					
Low Nuclear		Lower public acceptance				
No CCS			No CCS			
Low Efficiency						0.3% p.a. less improvement
TECH Plus	Stronger cost reductions	Stronger cost reductions & technology improvements		Breakthrough for FC	Stronger cost reductions & improved feedstock availability	

Global CO₂ Emissions 2003-2050 Baseline Scenario

Emissions increase dramatically by 2050

INTERNATIONAL ENERGY AGENCY

Global CO₂ Emissions 2003-2050 Baseline and Map Scenario

Map Scenario: Emissions returned towards today's level

Global CO₂ Emissions 2003-2050 Baseline and ACT Scenarios

Impact of not having CCS available

INTERNATIONAL ENERGY AGENCY

Global CO₂ Emissions 2003-2050 Baseline and ACT Scenarios

Impact of less efficiency progress

INTERNATIONAL ENERGY AGENCY

Global CO₂ Emissions 2003-2050 Baseline, ACT and TECH plus Scenarios

TECH Plus: More optimistic on progress for certain key technologies

INTERNATIONAL ENERGY AGENCY

- A more sustainable energy future is possible with known technology
- The costs are not disproportional
- But it will require sustained effort and investment by both the public and private sector in developed and developing countries

- We can return carbon emissions to their current level by 2050
- We can halve the growth of oil demand
- We can move onto a pathway that will stabilise CO₂ in the atmosphere at "sustainable levels"
- And this is consistent with continued rapid growth of energy demand in the developing World

- Most energy still comes from fossil fuels in 2050
- We can substantially decarbonise the power sector by 2050
- Decarbonising transport will take longer but must be achieved in the second half of the century

- Energy efficiency is paramount
- Also very important:
 - Carbon Capture and Storage
 - Renewables
 - Nuclear where acceptable
- Urgent action is required in public and private sectors:
 - Enhanced R & D
 - Demonstration and deployment
 - Clear and predictable incentives

Implementing the ACT Scenarios Policy Implications

- Energy efficiency is top priority
- Well focused R&D programs are essential
- Transition from R&D to deployment is critical
- Need for predictable long-term incentives for low-carbon technologies
- Non-economic barriers need attention
- A huge and coordinated international effort
- The task is urgent