

institut du développement et des relations durable internationales

2050 SCENARIOS FOR FRANCE

NIES COP11/MOP1 side event – Montréal: December 3, 2005

Global Challenges Toward Low-Carbon Economy Focus on Country-Specific Scenario Analysis-

Hubert KIEKEN

IDDRI Paris

6, rue du Général Clergerie - 75116 Paris - France

Tel: +33-(0)1.5370.2235 - Fax: ~.2145

Outline

National Context

First learning from 2 scenarios

 Perspective for a new modelling approach of "Factor 4" emissions reduction scenarios

6, rue du Général Clergerie - 75116 Paris – France

Tel: +33-(0)1.5370.2235 - Fax: ~.2145

The Iddri

Institute for Sustainable Development and International Relations

- Founded in 2001 as a research consortium, Iddri became a nonprofit, nongovernmental think-tank in 2003
- Iddri provides forums and networks creating common culture on sustainability issues among stakeholders, following 4 objectives:
 - Contribute to building up a more equitable and effective global governance
 - Reduce controversies on sustainability trough dialogues among stakeholders
 - Promote scientific research and multidisciplinary expertise on sustainability
 - Gather timely information and knowledge to improve decisions-making
- Focal areas are those requiring collective international action: *Climate change, Biodiversity, Agriculture and forests, Trade*
- Led by Laurence Tubiana

6, rue du Général Clergerie - 75116 Paris - France

Tel: +33-(0)1.5370.2235 - Fax: ~.2145

French National Context

- Long term national objective: to reduce by a "Factor 4" GhG emissions by 2050
 - Key driver for the *National Climate Plan* (2004)
 - Long term objective included in the 2005 Framework law for Energy
- Political target stimulated scenario building initiatives:
 - Energy Technology Outlook, commissioned by the Ministry of Energy, using the POLES model (P. Criqui, LEPII-EPE CNRS)
 - « Factor four » study of the French Interministerial Task Force on Climate Change (MIES), by P. Radanne, former President of the French Agency for Environment and Energy Management (ADEME)
 - Revised Negawatt scenarios for France
 - High level working group on F4 scenarios, mandated by the Ministry of Industry & Ministry of Environment
 - Etc.

6, rue du Général Clergerie - 75116 Paris - France

Tel: +33-(0)1.5370.2235 - Fax: ~.2145

F4 scenarios using POLES model

THE P<mark>OLES MODEL</mark>

Dynamic partial equilibrium model

- Developed by P. Criqui (LEPII-EPE, CNRS) under EU research programmes
- World disaggregated in 30 regions
- Energy sector and GHG emitting activities representation,
 - Detailed cost/performance data for 50 energy technologies
 - Detailed H₂ economy covering
 2 end-use & 10 production technologies
 - 5 carbon capture & sequestration options
- Recursive simulation framework exogenous/endogenous technologies

 « Two Factor Learning Curve » simulates cost decrease with cumulative installed

• Developed for the Ministry of industry

- Consistent with EU goals (+2°C)
- "F4" for AI countries / "F3" for France

6, rue du Général Clergerie - 75116 Paris - France

Learning from POLES scenarios

POLES VISION for 2050

i. Transportation

- Fast diffusion of Very Low Carbon (VLC) vehicles after 2030. 2050' market share of VLC up to 80%
- Energy consumption increase up to 2020. Oil remains main energy source (>50%)
- Car technology mix: electric, hybrids and H₂-ICE, but few fuel cells.

ii. Buildings

- In 2050: 30% of VLC buildings & only 25% buildings with standard energy efficiency
- Energy for Residential= renewable & electricity; Commercial= electricity (+90%)

iii. Industry

Energy consumption stabilise after 2010.
 2050 mix: gas (30%) & electricity (+65%)

iv.Energy Production

- Fast diffusion of CCS after 2025. "Full CCS" by 2040
- Most competitive by 2050: Renewables & nuclear

LESSONS for POLICY

i. Transportation

 Implicit high C value requires strong development of new infrastructures (ex. high speed train, rail freight freeway) to satisfy growing mobility demand & trade

ii. Buildings

 Massive retrofitting of building stock (2,5% / yr in av.) requires early signal to be fulfilled by 2050 (incentives, regulations, taxes...)

iii. Industry

for

 Open questions on the actual impact of the implicit high C cost: (Incentive for relocation vs High transportation costs)

iv. Energy Production

 Decarbonisation will lower expected oil&gas prices for 2050

6, rue du Général Clergerie - 75116 Paris - France

Tel: +33-(0)1.5370.2235 - Fax: ~.2145

« Factor four » MIES study

- Commissioned by the French Interministerial Task Force on Climate Change (MIES).
- Prepared by P. Radanne, former President of the French Agency for Environment and Energy Management (ADEME).
- Objective: understand the mix of policies needed for reducing GhG emissions fourfold in France by 2050 (vs 1990)
- Scenario based on a detailled description of:
 - energy flows and consumption through the economy
 - final energy consumption by energy type and sector
 - Efficiency improvement using best available technologies
- 2 steps approach:
 - Sensitivity analysis of final energy breakdown (varying with different prospective hypothesis)
 - Consistent Scenarios with F4 target

6, rue du Général Clergerie - 75116 Paris - France

- F4 emissions reductions for Industry, Residential & Commercial are achieved by moderate reduction of energy consumption but changes in end-use energy-mix
- For Transportation, strong reduction of energy consumption are needed, along with radical energy shift

6, rue du Général Clergerie - 75116 Paris – France Tel: +33-(0)1.5370.2235 - Fax: ~.2145 www.iddri.org

Lessons for policy makers (Short & Medium Terms)

Forbidden Paths

- Power generation based on fossil fuels without cogeneration.
- Abandoning nuclear without implementing CO₂ sequestration
- Oil-based transportation sector
- Low-efficiency fossil-heated buildings
- Massive use of fossil fuels in industries (steam, furnaces...)
- Wait and See strategies:
 - Strong inertia of crucial issues such as upgrading work on buildings and transport sector require that relevant policies must be adopted soon

Common Obligations

- High Efficiency end uses
 - In the residential-tertiary sectors, high efficiency do not necessary require upheaval in lifestyles
- Advanced Technologies <u>portfolio</u>
- Investing in building stock retrofit
- Switch of industrial processes to electricity.
- Raw materials recycling
- Profound behavioural changes are required for transportation:
 - Facilitated by urban planning, modal switch, fast train, bits instead of km...

e Tel: +33-(0)1.5370.2235 - Fax: ~.2145

6, rue du Général Clergerie - 75116 Paris - France

Learning from the 2 scenarios

- F4 emissions reduction by 2050 is achievable 1. (Even earlier "sceptical" agree...)
- Long term targets require early signals 2. (but no short term policies)
- 3. Some Good News may help... (Consumers behaviours, Electricity storage, CO2 sequestration, etc.)
- Intensified efforts on technological research welcome! 4.

Remaining issue (among others..)

- 1. Poor consistence observed in current modelling approach between infrastructure dynamics / expected structural changes and consumption patterns
 - For ex., what will be the impact of large building retrofitting plans on cement, steel or other materials industries?

6, rue du Général Clergerie - 75116 Paris – France Tel: +33-(0)1.5370.2235 - Fax: ~.2145

New modelling perspectives

- The SECC study: Scenarios under Carbon Constraints
 - Managed by Iddri and Fonddri (*Research Foundation on sustainable development and international relations*)
 - Financed by *Entreprises pour l'Environnement* (EpE), a coalition of 40 leading companies operating in France united by a sustainability commitment
 - Conducted by a consortium of 3 laboratories specialized in climate and energy issues: CIRED, LEPII-EPE & Enerdata
- The SECC study aims at studying implications for industry of long-term "low carbon scenarios"

6, rue du Général Clergerie - 75116 Paris - France

Tel: +33-(0)1.5370.2235 - Fax: ~.2145

The SECC study

Main goals:

- Bring together industry experts and economists to improve coherence between sectoral industrial dynamics
- Help to identify appropriate and realistic policies and measures that could contribute to F4 emissions reductions at least industrial end economic costs

Methodology:

- Based on coupled sectoral (POLES) and general equilibrium models (IMACLIM)
- Industries provide inputs on production processes and their expected evolutions
- Demand side disaggregation allows to simulate its material content dynamics
- Scenarios will be evaluated to identify constraints (capital stock turnover, investment cycles, technology development.) and opportunities (new demand for materials, new sources of value added...) along the path to 2050

Contact persons:

- Patrick Nollet, EpE pnollet@epe-asso.org
- Michel Colombier, Iddri michel.colombier@iddri.org

6, rue du Général Clergerie - 75116 Paris – France Tel: +33-(0)1.5370.2235 - Fax: ~.2145