

COSTS OF LCS AND TECHNOLOGY Five Principles of an Economically Efficient LCS

Low Carbon Society Workshop Tokyo, Japan

Jae Edmonds February 13, 2008

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Stabilizing CO₂ concentrations means fundamental change to the global energy system

2

More Information Is Available in the GTSP Report

Hard Copies of the Report are Available upon request

Summarizing Ten Years of Technology Research

And on the Web

http://www.pnl.gov/gtsp

or

http://gtsp.battelle.org

Five Principles for Achieving an Economically Efficient LCS

- Stabilization requires that greenhouse gases have a price—implicit or explicit.
- 2. The price of a greenhouse gas should rise at the rate of interest plus the natural rate of removal of the gas from the atmosphere.
- 3. The price of a greenhouse gas should be the same for a gas irrespective of the emissions source.
- 4. Decision makers should be able to form a reasonable expectation that the price will rise at a regular rate of doubling.
- 5. Increase R&D, energy-climate R&D in the nearand mid-terms, basic science for the long term.

1. Stabilization requires that greenhouse gases have a price—implicit or explicit.

Climate is a Public Good

- You cannot solve a **public** goods problem with better **private** decisions alone.
 - Public goods problems require public intervention.
 - Markets are needed to communicate the public interest to private decision makers.
- A price of carbon should reflect the social value of carbon.

2. The price of carbon should rise at the rate of interest plus the rate of removal from the atmosphere.

- Climate change is a stock pollutant problem, NOT a flow pollutant.
- Price of carbon should start low and rise steadily to minimize society's costs.
 - Eventually all nations and economic sectors need to be covered as the atmosphere is indifferent as to the source of CO₂ emissions.

3. The price of a greenhouse gas should be the same for a gas irrespective of the emissions source.

Not just electricity

Terrestrial carbon emissions

•All regions eventually need to join

Electrification

- The world is electrifying.
- Emissions mitigation increases the relative role of electricity.
- Electricity prices fall relative to fossil fuel prices.

A LCS EVENTUALLY NEEDS A GLOBAL CONTROL REGIME

Year 2020 Annex I emissions mitigation, relative to 2005, for different accession assumptions: 450 ppm

4. Decision makers should be able to form a reasonable expectation that the price will rise at a regular rate of doubling.

- The time when low-emission technologies enter into operation is dramatically accelerated when one of the cost elements (carbon emissions) is growing more rapidly than the rate of interest.
 - E.g. CCS will come into use long before the price of carbon reaches the point at which it would be sufficient to deploy the technology if it were held constant.
- Creating an expectation that carbon prices will double regularly has the side effect of lowering the carbon price needed to achieve a given emissions mitigation.

Mechanisms exist to communicate appropriate expectation.

- However, they require policies that extend indefinitely into the future—even if they include mechanisms for regular review and pegging of the price.
- E.g. "safety valve" for cap and trade where the SV value escalates at the proper rate.

5. Increase R&D, energy-climate R&D in the near-& mid-terms, basic science for the long term.

- The time scale of emissions mitigation is a century or more.
- Energy technology will be needed to help control emissions in the NEAR-, MID-, and Long-term to address climate change.
- Investments in basic scientific research in the first half of the 21st century can be transformed into energy technologies that can become a major part of the global energy system in the second half of the century.

Five Principles for Achieving an Economically Efficient LCS

- Stabilization requires that greenhouse gases have a price—implicit or explicit.
- 2. The price of a greenhouse gas should rise at the rate of interest plus the natural rate of removal of the gas from the atmosphere.
- 3. The price of a greenhouse gas should be the same for a gas irrespective of the emissions source.
- 4. Decision makers should be able to form a reasonable expectation that the price will rise at a regular rate of doubling.
- 5. Increase R&D, energy-climate R&D in the nearand mid-terms, basic science for the long term.

More Information Is Available in the GTSP Report

Hard Copies of the Report are Available upon request

Summarizing Ten Years of Technology Research

And on the Web http://www.pnl.gov/gtsp

or

http://gtsp.battelle.org

